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PREFACE

Under the Urban Mass Transportation Administration ( UMTA) Urban Rail Systems

Program, Transportation Systems Center (TSC) is providing support to the Office of

Technology Development and Deployment of the Urban Mass Transportation Administration.

Under this program, TSC is responsible for the conduct of research, development and

evaluation activities in support of the improvement of urban transit systems. The

Wheel/Rail Dynamics Project being conducted as part of this program is directed toward

the development of technical data that can be applied to improved performance specifica-

tions for transit car trucks and components to permit reductions in maintenance costs

and wheel rail noise while providing acceptable ride quality and safety.

The authors would like to thank Ms. Denise Dzwonczyk, a student in the

Massachusetts Institute of Technology Mechanical Engineering Department working at

TSC under the M.I.T. Engineering Intern Program for her careful review of the equa-

tions presented here and for performing the calculations required and plotting the

results shown in this paper.
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NOMENCLATURE

f = creep coefficient (linear theory)

f* = creep coefficient (nonlinear theory)

F = lateral force

F = lateral flange force

h = ratio of wheel base to track gauge

l = half of track gauge

M = moment

N = normal force on wheel

P = net lateral (centrifugal) force

q = half of total flange clearance

r = wheel radius of displaced wheelset

r^ = wheel radius of undisplaced wheelset

R = curve radius

V = truck velocity

W = total load

y = lateral displacement

a = wheel conicity

8,y = orientation of resultant velocity on leading and trailing wheels

6 = alignment deviation of irregular track

U = wheel/rail coefficient of friction

Up = flange coefficient of friction

ip = yaw angle of truck with normal to curve

Subscripts

L = lateral

R = resultant

T = tangential

1,2 = trailing and leading axle, respectively.
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EXECUTIVE SUMMARY

Under the UMTA Urban Rail Systems Program, TSC is conducting research and devel-

opment activities for improving performance and reducing cost of urban rail transit

systems. The Wheel/Rail Dynamics Interaction Project being conducted as part of this

program is directed toward reduction of maintenance costs and wheel rail noise while

providing acceptable ride quality and safety. This report describes the development of

a simple analysis procedure for estimating the steady state forces produced by a rigid

truck in curve negotiation. The rigid truck analysis presented here for a two-axle

truck provides a conservative upper bound on the wheel rail and flange forces that

could be expected for actual truck designs under steady curving conditions. The closed

form analytic relationships provided for estimating forces, truck angle of attack, and

slip conditions as a function of curve radius also permit a simple check on the validity

of more complex analytical models of truck designs and associated computer programs for

predicting wheel rail forces and kinematics. This analysis idealizes the wheel profile

as a tread with constant conicity with a vertical wheel flange. The analysis includes

both linear and nonlinear creep theory. The effects of creep force saturation and

wheel sliding on wheel rail forces and flange forces are presented. The range of

validity of the rigid truck approximation is defined by comparison of the results with

those predicted by more complete (but more complicated) analyses including truck

flexibility. Results of the simplified analysis are compared with test data recently

obtained at the Washington Metropolitan Area Transit Authority and are found to be in

excellent agreement for cylindrical wheel profiles.

viii



1. INTRODUCTION

The wheel rail forces produced by curve negotiation of railway vehicles result

in wear of both the wheels and rails. In addition, the stick-slip friction character-

istics of the frictional component of the wheel/rail forces result in generation of

excessive noise in curves. Accordingly, in the design and specification of trucks

for railroad or transit operations it is important to estimate the wheel/rail inter-

action forces and slip behavior produced by a truck in curve negotiation.

Previous investigation of steady state curve mechanics includes the work of

Newland [1] and Boocock [2]. These papers include analyses of both rigid and flexible

trucks and gross slipping of wheels but do not include the effects of flanging. The

relationship between creep and conicity for steering a truck through a curve is ex-

plored in these papers. Other investigators have used a steady state friction center

model to study the curving problem and have included flange force behavior in their

calculations. Graphical procedures based on this technique include the work of Porter

and Muller, and some examples are given by Koffman [3]. Iterative numerical techni-

ques that include nonlinear effects such as creep and clearances have been established

by Koci and Marta [4].

An overview of computational methods for the prediction of truck performance in

curves is given by Perlman [5] and includes a list of applicable references. Elkins

and Gostling [6] investigated the curving behavior of a wheelset including nonlinear-

ities in contact geometry and creep characteristics. Computer solutions are obtained

and no closed form results are presented.

Several computer programs have been developed for analysis of the steady state

curving problem, for the Department of Transportation including Battelle SSCUR under

DOT-TSC-1051 [7] and the work of Law under DOT-TSC-902, which take into account

details of truck suspension and car design. These programs, however, require detailed

knowledge of the car and truck design parameters which normally would not be available

for a first estimate.

This report presents closed form analytic solutions for the mechanics of curve

negotiation which include the effects of flanging. Conservative bounds for the wheel/

rail forces and slip motions are obtained from the analysis of rigid frame trucks.

An analysis is presented of a two-axle rigid frame truck which provides closed form

relationships for estimating the wheel/rail forces, angle of attack and sliding con-

ditions produced by this type of truck as a function of curve radius. In this paper

the wheel profiles are modeled by conical wheel treads with vertical whee-l flanges and

it is assumed that the flange is perfectly lubricated. It is shown that the effect of

friction between the vertical flange and the rail is to reduce the flange force.

These models and assumptions should provide a good approximation for cases where wheel

climb does not dominate the solution.

Analyses are presented to assess the applicability of this rigid truck model to

a flexible truck design with interaction between axles through elastic members. For a

flexible truck modeled by lateral and longitudinal primary stiffness connected to the

frame, relationships are derived in terms of the effective inter-axle stiffnesses.

1



Inequalities are derived to define the rigid and flexible truck range in terms of

these primary stiffnesses. A comparison of the rigid truck results with test data

for consists of the Washington Metropolitan Area Transit Authority is presented. For

trucks equipped with cylindrical wheels, the comparison of wheel/rail force levels

between the rigid truck model and the experimental results is excellent.

2



2. TRUCK FORCES

Forces act on the truck to produce the deviations from pure rolling motion

required for curve negotiation. The creep velocity is the difference between the

actual velocity and the velocity predicted for a pure rolling condition. For small

creep velocity, the creep forces are approximately proportional to the creep velocity.

For large lateral displacements of the wheel, the truck cannot traverse the curve

without flanging. In this section, a method is presented for the calculation of the

flange forces of a rigid truck in which the wheels are idealized to have constant

conicity and vertical flanges and it is assumed that the flange is perfectly lubri-

cated. Upon saturation of the creep force and initiation of wheel slip, force levels

are limited by the value of the coefficient of friction.

Using the velocity components shown in Figure 1, the lateral and tangential creep

velocities are

V
L1

=
>’l

- V -

X
L2 *2 ' Vv

( 1 )

where the first subscript corresponds to the wheel number with the outboard wheel

designated by 1 and the inboard wheel designated by 2. The second subscript corre-

sponds to the axle number with the trailing axle designated by 1 and the leading axle

designated by 2. The change in rolling radius with lateral displacement is

li
= r

0
+ a ( y

i
- 6

li)
(2)

2i
= r

o
- a (y

i
* {

2i)-

Where the <$ terms correspond to alignment deviation of irregular track. For steady

state curving

0 , y = 0. (3)

The rigid body kinematic relations for y^ and y^ , the lateral displacements for axles

1 and 2 , are

y-j = y - hl’p = y + h £L i|> (4a)

and the lateral velocity terms are

_ hIV • _ hiV (4b)
y
l R y

2
‘ R

'

3



a

<tO

FIGURE 1. STEADY STATE CURVING MODEL OF RIGID TWO- AXLE TRUCK
SHOWING CREEP VELOCITY COMPONENTS
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Substituting the relations from (2) - (4) into (1) leads to the creep velocities for

this steady state curving condition

The force acting on each wheel is composed of creep forces proportional to the creep

velocities of equation (5), gravitational forces associated with wheel conicity and

also possible flange forces, Fg, as depicted in Figure 2. The lateral axle forces on

each of the two axles are given by (neglecting spin creep effects)

+ Fg
1

(trailing)

+ Fg
2

(leading)

( 6 )

where f T is the lateral creep coefficient. The moment on each axle is given by

M
x

= - 2 f
T 2.

M, = - 2 f
T £

^(y-h20)-|

^(y+hrd)

+ a
r
o

2 fT
+

T g 2u 7

r

(trailing)

(leading)

(7)

where is the tangential creep coefficient and 5^ and 6^ correspond to the location

of the track centerline for axles 1 and 2

,

6
1

An - 6
12 +

6 22
i
2

=
2

( 8 )

Assuming that the truck is subjected to a new lateral force P, the total lateral truck

force is

F
1

+ F
2

+ p = 0 (9)

4f
L

'J; + (Fg
1

+ Fg,) + P = 0

.

Assuming zero centerplate friction, which is a good approximation for most modern

transit trucks, the total moment on the truck is zero.

M
1 ‘2 (F-

4 fjl

F
x

) h2 = 0

4 f

.

? 7

n a

R

(Fg
2

- F
gl ) h£ = 0,

+

( 10 )
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FIGURE 2. TRUCK FORCES
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Assuming, as a first approximation, that the tangential and lateral creep coef-

ficients are equal (i.e., fT = f
L = f) and introducing the relative displacement y a

y a = y
c~i

+ 5
2

( 11 )

the relationships from (9) and (10) may be solved simultaneously for the flange forces

Fg^ and Fg
2

as follows

-2f
p s 2

= — (1+h^H
R

av
a

2 -
2 (12)

F Sl ' T (1+h )

£

R

c y :

- 2 f ^
* -•

CURVING REGIONS

Wheel/rail forces and associated truck geometry are developed for the three

curving regions. These regions are creep guidance (no flanging), free curving (flang-

ing on lead outer wheel) and constrained curving (flanging on lead outer wheel and

trailing inner wheel) . It is assumed that the force levels produced are such that

gross sliding (slipping) does not occur. In the next section the effects of adhesion

level and gross sliding are considered.

Creep Guidance Region

In this region the truck is guided totally by the wheel conicity and creep forces

with no flange contact . Setting Fg]_ = Fg 2 = 0 in equation (12) and solving for yaw

angle ^ and relative lateral displacement y , yields
gL

»

y

a
d*h 2

) (2^)- (13)

The lateral axle forces are then found from equation (6) as

Fj = -2f((h;./R) + p/4f) (14)

F
2

= 2f C (h?./R) - P/4f).

The wheel rail lateral forces are obtained from Figure 2, after substituting in

the yaw angle and zero flange force. The terminology "inward" defines a force on the

wheel toward the center of curvature while the terminology "outward" defines a force

on the wheel away from the center of curvature.

leading axle outboard =

leading axle inboard =

trailing axle outboard=

trailing axle inboard =

, ( h SL P \ w
f [— '

7T
j

- ?
a

r (hi P\ W
f yTT ’ Tf)

+
~s

a

' £ rx +
7f

)

-

s
a ( inward )

r ( hJl P \ W
• f +

T¥)
+
I a •

( 15 )
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The minimum curve radius that can be negotiated without flange contact is found from

equation (12) by setting ya = q - hlip

,

where q is half of the total flange clearance,

(see equation (17)),

(1

a q

h )

RTT\

r 2
o

4 f

(16)

"Free" Curving Region

In this region the truck is guided by a combination of the creep forces and a

flange force at the outboard wheel of the leading axle; there is no flanging on the

wheels of the trailing axle. The maximum lateral displacement that axle 2 can incur

is q. The relative displacement y is then
cl

y
2

= q (17)

ya = q - h£i|>.

Using Fg^ = 0 in equation (12) leads to a yaw angle consistent with equation (17).

(1 + h
2

)

2 aq Ph

^max

(18)

where the maximum yaw angle of q/h2 follows from equation (17) by setting y =0.
Equation (18) shows that the effect of centrifugal force is to reduce the angle of

attack. The flange force of the outboard wheel of the leading axle Fg^ is derived

from equation (12) by adding the relations together and using Fg^ = 0,

Fe, = -4f\p - P (inward)
2 (19)

= - 4 f

(1 + h
2

)
i ^

hi o2
r _

P (a2/r
Q

)

" a l

This result shows that for a cylindrical wheel, a = 0, the flange force is independent

of the centrifugal force P. For conical wheels, the effect of the centrifugal force

is to reduce the flange force Fg
2

* The lateral wheel rail forces are obtained from

Figure 2, using the flange force from equation (19),

leading axle outboard

leading axle inboard

F + f
§2 (x 4 41 )-

W
7 a

fh2 P W
4g

2

+ — ' T 8
a

fh_2

R
P
J

+ a

( 20 )
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, , , -./he ,,\ w
trailing axle outboard = -fl-g- ~'

t,

f
- J*

1 c fh e r w*
-T

F
g,

- — • i - r

trailing axle inboard « -f(x • W
+ —oi

8

4f
4 g-

fh£ E ,

»— - 4
+ 8“*

This shows that for the free curving region the centrifugal force is reacted egually on

all four wheels. The maximum radius applicable to this free curving region is set by

equation (16) and the minimum radius is determined by setting ip = ip in equation (18)m3x
so that

(1 + h'H .n. (1_4 h ~)
.Id

tit

—

nrr R
/ q

(j
+

47
)

+
tt ( 21 )

Constrained Curving Region

In this region the truck is guided by the combination of creep forces and flanging

on two wheels. Both the outboard wheel of the leading axle and the inboard wheel of

the trailing axle are flanging and tending to widen the track gauge. The yaw angle

reaches its maximum value, ip and the relative displacement y is zero-
max r J a

'l'
= \P_max

= q/hZ .

( 22 )

The flange forces are then found from equation (12)

F
- 2 fT I * I

- II
h u*hb |

- a}-
£-

(23)

The lateral wheel rail forces are obtained from Figure 2 by substituting the flange

forces from equation (23) and \p from equation (22),

leading axle outboard

leading axle inboard = f

trailing axle outboard = f

F
®2

* f '

w
tT

w

(x * A) •

(x * ft)
*

(-x * A) -

trailing axle inboard = F + f (-4c- + A- ) + Sa*
gj \

R hH / 8

( 24 )

W
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Due to the utility of this force and geometry data, the results for all three

curving regions have been summarized in Table 1. The limitations inherent in these

results should be noted: a vertical flange model has been used, a linear creep model

and no gross sliding has been included. The effects of non-linear creep and gross

sliding (force saturation) have been included in a later part of this paper.



TABLE

1.

CURVING

REGIONS

(NO

GROSS

SLIDING)

11/12





3 . NUMERICAL CALCULATIONS

As an illustration of the previously derived relationships, several numerical

values are derived for the following typical truck values,

£=2.35' a = 1/20 h = 1.41
(25)

r = 1.25’ q = .0338'
o M

For the following numerical calculations it is assumed that the steady state

curving motion is taking place at balance speed, so that the net lateral force P is

taken as zero. Following Table 1, the limiting curve radius for each curving region is,

constrained curving: R < 490 feet, ^ = .584°
ms x

free curving: 490 feet < R < 5214 feet (26)

creep guidance: R > 5214 feet.

In order to derive first order values for the forces, an estimate of the creep coef-

ficient is needed. An approximate value for the creep coefficient in the linear range

is about 150 times the wheel load. Since we are dealing with large creep, a value of

about 75 times the normal force is probably more appropriate. (Further discussion of

the accuracy of these values can be found in the section on non-linear creep.) The

creep coefficient, assuming a 100,000# car weight with two trucks and an equal weight

distribution, is then

= 9.375 x 10 5 #.

(27)

Consider the free curving case with a 850 foot radius curve. The flanging wheel on

the lead axle has a flange force

= - 20,282 #

where the minus sign implies that this force acts on the truck, toward the center of

curvature. The lead axle wheel rail forces are found (using Table 1),

outboard force = -T-F
JU W

+ fT -T01

-12 ,182# (inward)

inboard force = -7F + fill +
^2 R 8

= +9,350# (outward'

(29)

(30)

13



( 31 )

the' trailing axle, wheel rail forces are

C i
F

ird force ! T g.out boai

inboard force

fh ? - W
R + 8

791" (outboard) , 2041# (inboard).

The lateral forces for this free curving region are shown on Figure 3. (The

forces in Figure 3 enclosed with parentheses correspond to the forces for the slipped

condition with u = 1/2. These forces will be discussed in the next section on

"Slipped Conditions".) As shown in Figure 3, the lead axle forces act to widen the

gauge while the trailing axle forces act to push the rail inward. The maximum friction

force the wheels can develop is uN where u is the coefficient of friction. For the

100,000 lb. car, N = 12,500 and for u = 0.5, the maximum force would be 6,250 lb. The

predicted forces for the trailing axle are well within this limiting friction value,

however, the predicted 9, 350 lb force would require a coefficient of friction of about

0.7. it is therefore believed the above represents a high estimate, with forces that

would be developed on very clean dry rail.

The relationship among flange, wheel/rail force and curving regions are shown in

Figures 4-6 based on the values tabulated in Table 1. Note that the force levels are

linearly proportional to the curvature (1/R), assuming that sliding has not occurred.

From equation (16) the minimum curve radius negotiable without flange contact is 5190

feet for the rigid truck and 1738 feet for the single axle wheelset. From Figures 4

and 5, it may be seen that the lead axle cannot enter the constrained curving region

without gross sliding occurring. A comparison of Figures 5 and 6 shows that in the

free curving region (flanging on lead outer wheel) the wheel/rail forces for leading

axle are much greater than the corresponding forces for the trailing axle. The flange

force on the outboard wheel of the leading axle can become quite high before sliding

occurs reaching 14,000# (u = 1/2) and 29,000# (u = 1).

SLIP CONDITIONS

The previous results will hold only for the case of no wheel slipping. However,

the maximum value that the resultant force can acquire is pN , where u is the friction

coefficient and N is the wheel load. It is assumed that once a wheel slips, the

resultant force is aligned with the resultant creep velocity. Typically the lead axle

will slip before the trailing axle. Two cases are considered in this section; in the

first case the lead axle slips and the trailing axle does not slip while in the second

case both axles slip.

Lead Axle Slipping, Trailing Axle Not Slipping

The creep velocities for the wheels of the lead axle are given in equation !5)

V
L-

V
T.

= -V

= V

(x * )

and the direction of the resultant velocity vector is governed by

tan B = V. ,VT •

Lj

2
/ 1

2

(32a)

(32b)
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R = 850’

£ =2.35’

r
o

= 1 - 25 ’

a = 1/20

q = .0338'

FIGURE 3. APPROXIMATE LATERAL FORCE LEVELS ON TRUCK FOR FREE CURVING REGION
WITH 850' RADIUS (THE FORCES IN PARENTHESES CORRESPOND TO SLIPPED CONDITIONS
WITH u = 1/2)
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FIGURE 5. LATERAL WHEEL/RAIL FORCES ON LEADING AXLE VERSUS RADIUS OF TRACK
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In these expressions, the alignment deviation terms 6 have been omitted for simplicity

of analysis and P is taken to be zero. The lateral forces on the two axles follow from

equation (6) and the saturation of the resultant creep force is yN.

2f
/h£

\
R

' " + F

F, = 2yN sin 8 + F

trailing

leading, slipping

(33a)

and the corresponding moments on the axles are

m
x

= - 2 f £ 7
~ 0-hUO- J
o (33b)

M
2

= 2 £yN cose.

Setting the total lateral force to zero and the total truck moment to zero leads to

two equations which provide explicit expressions for the flange forces Fq and Fc

F
o

= - 2uNs in3 - ^ cos 3 + ^ -f— (y-h£i) •I]

(1

- ” cos6 - K

(34a)

(34b)

If the lead axle slippage occurs in the free curving region , associated with

flanging at the outboard wheel of the lead axle,

Vo = q

§i

y = q

= 0 .

h £ 'li

(35)

then the yaw angle <J< is found upon substitution of the relations from (35) into

equation (34b),

(l+2h
2

)
- Si + cosB

T n i

2h

C
• Wi

(36)

Although this equation is transcendental, with 6 defined by equation (32b) it is

relatively simple to solve since 8 varies slowly with ip

.

Substitution of the yaw angle

into (34a) yields a value for the flange force Fg while the axle forces are found from

(33a) .

If the lead axle slippage occurs in the constrained curving region , associated

with flanging at both the lead outer wheel and the trailing inner wheel, where

\p
= ’p

max

= q/h5.

y = 0

( 37 )

then the flange forces are found by substitution of (37) into (34),
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-ZyNsinS
yX
h

cos 6

F
§1

/ he
- + co s 8 + £

aq + £

l
R h? /

h
p

h
L
r
o

R J

( 38 )

The axle forces and F 2 follow from substitution of these flange force values into

equation (33a)

.

Both Lead Axle and Trailing Axle Slipping

In this region, the resultant force on the wheels of both the lead and trailing

axles reaches saturation levels, and the lateral axle forces can be written as

!yXs in

'

F, = 2yXsinS + F
2 g->

where

tan y = V, /VTL
1

1

1

(39a)

( 39b)

and the creep velocities on the wheels of the trailing axles are defined in equation

(5) . The corresponding moments on the axles are given by

M
1

= 2£yX cosy

M-, = 2£yXcos£
(40)

Setting the total lateral force to zero and the total truck moment to zero leads to

two equations which can be solved for explicit expressions for the flange forces Fa
^

and F_ ,g 2

F = -2yiXsin8 - (cosp + cosy)
° 2 (41a)

F = - 2yX s iny + ^ (cos£ + cosy).
§1

h
(41b)

If both wheels slip in the free curving region , associated with flanging at the

outboard wheel of the lead axle, it follows from equation (41b) that the following

transcendental equation governs the yaw angle p

2hsiny = cosS + cosy (42)

where £ and y are defined in equations (32b) and (39b) . Once ip is determined, the

flange force Fa ^
follows from (41) and the axle forces from (39a) .

If both wheels slip in the constrained curving region , defined by (37) then

equations (41a) and (39a) are used to find the flange forces and axle forces, respec-

tively.
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Results based on these equations are shown in Figures 4-6 and it is seen that the

wheel slip condition has a dramatic effect on flange forces and wheel/rail forces.

Results are presented for both y = 1/2 and y = 1; the latter value leads to the maximum

possible force levels with lead axle flange and wheel/rail forces remaining about twice

the force levels associated with y = 1/2. Although the lead axle wheels slip in the

free curving region, the trailing axle wheels do not slip until the constrained curving

region is reached. Once slipping occurs on both axles, the wheel/rail forces on the

leading axle level off and start to decrease with increasing curvature, as shown in

Figure 5. The forces on the outboard wheel (flanging) are about twice the forces on

the inboard wheel. The wheel/rail forces on the trailing axle (Figure 6, y = 1/2) fol-

low a similar pattern. The forces on the inboard wheel (flanging) are greater than the

forces on the outboard wheel. Through a large range the lead axle forces are greater

than the trailing axle forces. At 333 feet (101.5 meters) the outboard and inboard

wheel/rail forces for the leading axle are -12,275“ and 6,765*, respectively while the

corresponding wheel./rail forces at the trailing axle are -432“ and 6,065*. The flange

force (Figure 4) on “he lead axle Fg^ shows a pattern of leveling off and decreasing

for y = 1/2; however, the trailing axle flange force F
qi

continues to grow with

curvature. For a radius of 500 feet (152.4 meters) and y = 1/2, F
£

= -17,000* and

Fa ,
= 0 while at a radius of 250 feet (76.2 meters), Fa = -17,530# and Fa = 9,120#.

*1 y 2 y
l

Finally these wheel slip results for y = 1/2 at a radius of 850 feet (250 meters) are

shown in Figure 3 in parentheses. Since the onset of slipping occurs at about 1150

feet for y = 1/2, these force levels for the 850 foot radius are considerably below

the non-slipped values shown in Figure 3.
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4. NONLINEAR CREEP RELATIONS

The previous analyses assumed a linear relation between creep velocity and creep

force, for the wheel without slipping, and further assumed that the creep coefficients

were the same for all wheels. To obtain a more realistic force condition, it is now

assumed that the resultant creep force at each wheel is non-linearly related to the

resultant creep velocity. The creep forces and moments from equations (6) and (7) now

become

(43a)

(43b)

where f^ and f
2

refer to the creep coefficients on the trailing and leading axles,

respectively. In addition, it has been assumed that as a first approximation, the

creep coefficients for pure lateral and pure longitudinal motion are equal. Setting

both the total lateral force and total truck moment to zero, leads to two equations

which can be solved for explicit expressions for the flange forces Fn and Fa ,

" 1 -2

F =

^2

(fi+f?)
h ^ *(f -f )-2f,

o
1 “ Z I 44a)

(fl+f?)
h

ay 1 + aj

r
o J c

'^(f
1
-f

2
)
+ 2f

1
(44b)

Using the relations from equations (43) and (44) a complete analysis of the steady

state curving problem can be carried out to describe fully the geometric and loading

characteristics for the regions of creep guidance, free curving and constrained curving.

However, complete details are given only for the free curving region and a numerical

comparison is provided for an 850 foot radius. For this free curving region , the

outboard wheel of the leading axle is flanging and the appropriate relations are given

in equations (17) and (35). Setting the flange force for the trailing axle to zero in

equation (44b) leads to an expression for the yaw angle.

V =

f
l
+ f

2

2T,
( 45 )

max q/h?,.
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0.This equation for <p and ^ reduces to equation (18) when f. = f , and P
max i z

The

flange force Fg^ can be obtained by substituting yaw angle from (45) into equation

(44a) .

The nonlinear creep relations, which are derived from the work of Johnson and

Vermuellen, follow the form derived by Cooperrider, Ref. [8] and is depicted in

Figure 7. The relationship involves the resultant wheel force F
R

and the resultant

creepage V
R

in the form*

p 1 7 1 3— = ff*V )
- - f f *V ") + — ff*V )

pN
11 'R 1

3
1 R J

2 7
11

'R-' Vf^

F d

t# = 1 R' T*

:46)

When the relationship between the resultant force and resultant creepage has been

established from equation (46), an equivalent linearization can be determined (as shown

in Figure 7 by drawing a straight line from the origin to the appropriate point on the

non-linear F
R

vs. V
R

curve) from the relation

f - R/

v

R
• (47)

The coefficient f* used in the non-linear relationship of (46) is found after fixing

p, the friction coefficient. For example, setting p = 0.5 and assuming that an ap-

proximate value of the creep coefficient is 15U times the wheel load N, leads to the

relation

pNf * = 150|

f* = 150
[48)

= 300.

The creep relation from equation (46) then becomes (a 100,000*4 car body has been

assumed)

,

62T0
- 300V

r • | C300Vr )

2
* ^ (3t.0V

R )

3 V - 01

: 49)

F
r = 6,250 Vr— 0

1

where the resultant creepage for wheels on the leading and trailing axles, are

^Creepage is defined as the creep velocity normalized by V, the forward velocity of
the truck.

24



FIGURE 7. NONLINEAR CREEP FORCE RELATIONSHIP AND EQUIVALENT LINEARIZATION
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( 50 )

h_2.

R
- V (~

\
T
o
|q-2hU'} - |

Since \p, as defined in equation (45) is a function of the creep coefficients f^ and f
2

an iterative calculation must be performed for the force - velocity relation of (49)

until the results converge and the proper creep coefficients are determined from (47).

For the 850 foot radius curve discussed previously, the creep coefficients acting

at the wheels of the leading and trailing axles are calculated as

f
2

= 0.633 x 10^#

(51)

f
x

= 1.3634 x 10
6

#,

It is of interest to note that the initial estimate of creep coefficient from equation

(27), f = 75 W/8 (f = 9.375x10^#) in the linear creep calculation, is an approximate

average of the creep coefficients for the leading and trailing axles from equation (51)

.

Once the creep coefficients are known, the forces can be found from equation (43) and

(44). At 850 feet, the flange force on the lead outer wheel is

-15, 708# (52)

which is about 75% of the flange force predicted in equation (28) by the linear theory

without slipping and quite close to the 14,893# flange force predicted in equation

(34a) for the linear theory including wheel slip. The lateral wheel rail forces can

also be calculated and compared to the linear results at 850 feet shown in Figure (3),

leading axle outboard

= F +f.
g 2 7

= -10,162*

W
Fa

leading axle inboard

= 6,796#

+

LINEAR INCLUDING
SI iD

-9,341#

r*

LINEAR INCLUDING
Slip

6,802#

(53)
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trailing axle outboard, inboard

LINEAR INCLUDING
Slip
631 n

1881 “ -

1 058 s

2308 =

The results based on the nonlinear creep relations are superimposed on the linear

creep theory and plotted in Figures 8 and 9. The nonlinear creep calculations are

carried out until saturation occurs on the wheels of the leading axle, Fr
2

= PN. As

is shown on the Figures, the nonlinear creep results are bracketed by the linear creep

results for f = 75W/8 and 150W/8. In Figure 9, the nonlinear creep results merge

almost perfectly with the wheel/rail force for f = .9375 x 10 # at the inboard (non-

flanging) wheel as the saturation level is reached at the wheel slip condition. The

wheel/rail force at the lead outboard wheel is slightly greater for the nonlinear

creep theory in both the non-slip and slipped region. As shown in Figure 8, the flange

force at the lead outboard wheel approaches the linear slipped results from below.

CCN CL US IONS

Results have been presented in closed form for the forces generated in steering a

rigid truck through a curve under steady state conditions. These wheel/rail forces and

flange forces are derived for a wheel geometry modeled by conical wheel treads with

vertical flanges. These results are expected to provide a good approximation for the

forces acting on more realistic wheel profiles as long as wheel climb does not pre-

dominate in the response. Three curving regions are identified, creep guidance, free

curving (flanging on lead outer wheel), and constrained curving (flanging on lead

outer wheel and trailing inner wheel) . The analysis includes both linear and non-

linear creep theory and also includes the effect of force saturation and wheel slip.

Some simple suggestions are given for estimating the creep coefficient in a linear

creep theory so that the force levels predicted are quite close to the forces calcu-

lated from the more complicated nonlinear creep theory. It is shown that force

saturation and wheel slippage greatly affect the force levels.
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5 , EFFECTS OF FLANGE FRICTION

In the calculations given above it is assumed that no friction force acts between

the flange and the rail. Assuming a value for the coefficient of friction Vp between

fiance and rail as shown in Figure 10, the lateral force balance and moment relations

of equations (9) and (10) are

4 ft/ + (Fg^ + Fg 7 )
+ P = 0

4fS
2 »ya
R ‘

r
o .

+ 4 f
h “ 2

"
(54)

+ (Fg 7 - Fg
1
)h2 + (Pg, +

l

:

g ! ) U
r 2l

= 0 .

Solving these equations for flange force gives

r - 2f (l+h")2
ay

a

R " r
o

T + 2f*)( - 1

Fe.
2 f

TT
( 1+ h ' ) 2

ay
a

R ‘ r
o J

7
+ 2f * X + 1

(55)

which shows that the magnitude of the flange force is reduced by the presence of

friction u .

The effects of Up on the three curving regions are found from these equations. In

the creep guidance region the flange forces are zero so that all the relations for yaw

angle, axle force and wheel/rail force remain the same as shown in equations (13)-(16a).

In the free curving region , the trailing flange force is zero, which leads to

0

u + h24 - fa -

0

Ph
4T

hi
(56)

and shows that the yaw angle is reduced by the presence of flange friction. The flange

force Fg^ follows immediately from equation (55)

Fg
2

= *
-JFtf, * P

4f
h

which is identical in fcrm to equation (ly) . In the constrained curving region the

yaw angle reaches its maximum value

u*h 2

)!
-

R r

0 = q/h2 (58)
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FIGURE 10. FLANGE FORCE AND FRICTION FORCE DUE TO FLANGE FRICTION
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and the flange forces follow from (55)

Fs
2

2f
h

u+h 2

4

p
gi

= 2f
h

? P

C1+h
iff

( 59 ;

As an indication of the effect of flange friction, the flange force and lateral

wheel force at the outboard wheel of the leading axle are calculated for the free

curving region, with zero centrifugal force (P=0) . The flange force is

F § 2

4 f

TT (bO)

and wheel/rail force is (equation (20)

)

Fg
2

* flir +
!o

- IV

F1

1 Fg
2

fh S>

R

W
F1 '

leading axle outbound

(bl)

The calculations are done for conditions listed on Figure 3 at R = 850 feet, for

various values of the coefficient of friction y . The results are given in Table 2

and show that flange friction has a significant effect. A flange with friction coef-

ficient Up = .4 reduces the flange force by 24% from the lubricated flange result

(Up=0) . The corresponding reduction for the wheel/rail force at the lead outer wheel

is 30%.
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TABLE 2. EFFECT OF FLANGE FRICTION ON FORCES IN FREE
CURVING REGION, LINEAR CREEP THEORY ff = 9.375 x 10$ lb,
R = 850 ft)

U
F

Fs
2

W/R FORCE
AT LEAD OUTER WHEEL

lb lb

0 -20,282 -12,182

9 - 1 ", 53" -10,123

. 4 -15,445 -8,548

. 6 -13,800 7 ,32 0

. S -12,472 -6,324

1 . 0 -11,377 -5,503
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6, INFLUENCE OF TRUCK FLEXIBILITY ON CALCULATED WHEEL/RAIL FORCES

In actual truck designs the interaction between the truck axles is through the

elastic members connecting the two axles. The rigid truck represents a limiting case

where the stifness of these elastic members is extremely large. An indication of the

range of validity of the rigid truck model is obtained from the analysis of flexible

trucks conducted in Reference (1) where Newland obtained the minimum radius curve that

can be negotiated by a flexible truck with infinite flange clearance and without wheel

slip. This relationship is presented by Weinstock (9) in terms of the effective

stiffnesses between axles.

2fT
M h-

- UK
H ~ fft/K h?)

1/2

m (
f
L
f
T
/K

y
K

.

,.)

(62)

where K and K refer to these effective lateral and yaw stiffnesses. In this equationy t
it is seen that variations in truck stiffness produce negligible changes in the result

when

:

vT (VK
v
h2)<<1 '

n '

CL Z

r

f
L
f
T «1- (63)

The rigid truck assumption is therefore expected to be valid for:

- . K K >>
r

Y. : > rr
v r n

K K .,>> —
y * r

0

f
L
f
T'

(64)

For the dimensions used in Figure 3, this leads to:

K >>2.4 x 10
3 #/inch

y
( 65 )

K K >>9.4 x 10
10

(*)
2 /rad

y V

where both the tangential and lateral creep coefficients are assumed as 1 x 10^*. A

plot which defines the region of validity of the rigid truck model is shown in

Figure 11. For a flexible truck modeled by lateral and longitudinal primary stiffness

k and k connected to the frame, relationships may be derived in terms of the effec-
y x
tive interaxle stiffness K , K.^. Following the analyses of Reference (9), it follows

that

V * k
x

k k

K = —LJL— T
fc + h 1

( 66 )

from which the primary stiffness parameters may be written as:

k = K./2.
2

x i;/

k
y

= V C1 ' ^
h^ 2

}

(67)

35



EFFECTIVE

TRUCK

LATERAL

STIFFNESS

K lb /in.
T

FIGURE 11. RANGE OF VALIDITY OF FLEXIBLE AND RIGID TRUCK MODELS IN TERMS OF EFFECTIVE

INTERAXLE STIFFNESS (a = 0.05, h = 1.41)
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2 2
where the vanishing of the denominator (

K ^
= K^h l ) defines the boundary between

radial and conventional truck models. Inequalities defining the rigid truck range

can then be defined based on the results in equation (65) and the parameters listed

in Figure (3) (h = 1.41, i = 28.2”)

k >
u -iy " 8.46 x 10 k - 2

x

. 2400

y - 1 - (4 800'/k'
xT

15,400 < k < 49,250^/inch
’ x

49 , 250#/in < k
x

( 68 )

A plot defining the range of validity of the rigid truck model in terms of primary

stiffness is shown in Figure (12).

As an indication of the range of validity of the rigid truck results, a parametric

study is made of a flexible trubk using the Battelle steady state curving program

SSCUR ( 7 ) . For a two-axle flexible truck with equal primary stiffnesses of

k = k = 1 x 10
4
#/inch

x y
(69)

runs were made with these stiffness values and then subsequent runs were made as the

stiffness values are increased by factors of ten. Defining k as the value of these

equal primary stiffnesses, equation (66) can be written as:

K = 2, k
'P

K =

1 + h
I*

(70)

The lateral wheel/rail forces computed by the steady state curving program are plotted

against this "stiffness factor" in Figure 13 along with the forces for the rigid truck

model in the free curbing region (flanging on the lead outer wheel) . For the case of

stiffness factor = 1, corresponding to the values in equation (69), the inequalities

of equations (65) and (68) are not satisfied and the rigid truck results cannot be

used to predict force. (The flexible truck for this value of primary stiffness actually

flanges on the outer wheel of both the leading and trailing axle.) Increasing the

primary stiffness by a factor of 10, the stiffness inequalities of equations (65) and

(68) are satisfied, and the comparison with the rigid truck is excellent. Both the

flexible truck and the rigid truck predict flanging on the lead outer wheel with the

wheel/rail forces comparing to within 5% while the force at the lead inboard wheel

compares to within 2.5%. For an increase in the stiffness factor by another factor of

10, the forces are within 1.63s as shown in Figure (13). The results in this parametric

comparison study are also shown in Figure (11) . From equation (70), it follows that

K
v

= V^ 1 + h2 )
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FIGURE 12. RANGE OF VALIDITY OF FLEXIBLE AND RIGID TRUCK MODELS IN TERMS OF PRIMARY
STIFFNESS (h = 1.41, £ = 28.2", a = 0.05)

38



LATERAL

FORCE

PER

WHEEL

(lb)

10, 000

9,000 _

8,000

7 , 000 Q-

6,000

5,000

4,000

3, 000

2,000

1,000

9, 341 lb

LEAD AXLE , OUTBOARD

6, 802 lb

Ct.———0-——O LEAD AXLE, INBOARD

\

u

V BATTELLE, STEADY STATE
CURVING MODEL

“ \

V O- /
RIGID TRUCK MODEL (Fig. 3)

1,881 lb

srmwr-O-

TRAILING AXLE, iNSOARD

631 lb

TRAILING AXLE, OUTBOARD

10 10 ' 10 3 10 4 10-* 10'

STIFFNESS FACTOR, k

FIGURE 13. COMPARISON OF BATTELLE STEADY STATE CURVING MODEL TO A RIGID TRUCK
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for the case of

lateral and yaw

study are shown

equal primary stiffness k. This linear relationship between effective

stiffness is shown in Figure (11) . Similar results of the parametric

in Figure 12 .
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7 , COMPARISON OF RIGID TRUCK RESULTS WITH TEST DATA

The rigid truck results provide closed form relationships for estimating the

wheel/rail forces, angle of attack and sliding conditions during steady state curving.

This type of information is useful for the design and evaluation of field tests and an

initial evaluation of expected wheel/rail forces. An example of this combined testing

and analytical approach is given in Ref. [10] for the Washington Metropolitan Area

Transit Authority investigation of possible wear problems during transit operations

on curves. The track was instrumented so that wheel/rail forces could be recorded and

flange forces calculated.

The truck suspension stiffness for this transit truck is estimated as

k = 160,000#/inch (longitudinal)

(72)

kv = 23,000#/inch (lateral).

Since the longitudinal primary stiffness is in the range k
x
>>49, 250#/inch, the truck

parameters are in the rigid range as defined by equation (68)

,

k
v
>>2 , 474 a /inch k

x
>>49 , 250#/inch, (73)

A calculation of the effective interaxle stiffness from equation (66)

,

K =

1.27 x 10 in-#/rad

k k

K = —X £ ---
y k + h“k

x y

= 1.79 x lO^/inch

(74)

also verifies that the truck parameters are in the rigid range based upon the limits

set by equation (65)

.

Tests were run with trucks equipped with cylindrical wheels and also for trucks

with conical wheels. Measurements of wheel/rail forces were made with strain gages

mounted on the high rail and the low rail of the Washington Metro at an 800 foot radius

curve located near Washington National Airport for speeds ranging from 5-40 mph. For

a wheel rail friction coefficient of 0.5 and a flange friction coefficient of 0.4 the

wheel rail force predicted by the rigid truck analysis is 6,200 lb compared to the

measured force of 6,460 lb (averaged over all runs for dry rail conditions at the max-

imum force location) reported in Reference 10. The flange force predicted by the rigid

truck analysis is 12,100, which compares well with the 11,790 lb obtained from the

measured data.
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